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A characterization of the best Chebyshev approximation in terms of alternants
with sign conditions is established for arbitrary Haar cones.

1. INTRODUCTION

When the Chebyshev approximation by y polynomials is considered, the
local best approximations can be characterized in terms of alternants with
signs. This was verified in [2, Part II] by making use of the special
properties of those Haar cones which occur as tangent cones for y
polynomials.

In this paper we shall establish such an alternant criterion for arbitrary
Haar cones. We note that alternants with sign conditions occur in cases
where boundaries are present. In particular similar characterizations have
been recently used in the (quite different) investigation of best perfect splines
[4].

2. PRELIMINARIES

Let [a, b] be a compact interval and let the space of continuous, real
valued functions C[a, b] be endowed with the uniform norm. An n­
dimensional linear subspace He Cta, b] is called a Haar space of dimension
n, if each nontrivial function v E H has at most n - 1 zeros in [a, b]. A basis
{hI' h 2 , ... , hnl of a Haar space is said to be a Haar system. Let
{h p h2 , ••• ,hnlcC[a,b]. Then

K = 1itl ai hi; ai E IR, ai ~ 0 for m + 1~ i ~ n!
is called a Haar cone of dimension n, if for each subset L, {I, 2,..., m I c L c
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{I, 2,..., n}, the system {hi; i E L} is a Haar system. The cone K is a proper
Haar cone, if m <n. To each u E K represented by u = LI=I a;(u) h; is
assigned an indexing set

J(u) := {I, 2,..., m} U {i ~ m + 1; a;(u) > O}

an integer

k(u) := IJ(u)1

and a (possibly larger) Haar cone

KI(U) := !itl a;h i ; a; E IR, a i ~ 0 for i E J(U)! .

Furthermore, to each Haar cone K we assign the integer

r = r(K) := sup{k E IN; there exists a nontrivial

function v E K with k - 1 zeros in [a, b l},

which is called the "root-number" of K. In case m <n (i.e., K is a proper
cone), we obviously have m + 1~ r~ n.

In the next section we shall refer to

Remark 2.1 ([3, p. 22]). Let {I, 2,... , m} c {II' 12 ,,,,, Id c {I, 2,..., n}.
Then the determinants

preserve a single strict sign for all choices

Indeed, the Haar condition yields

whenever a ~ t l < t2 < ... < tk ~ b. Thus we obtain the statement by virtue
of the intermediate value theorem.
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3. PROPERTIES OF HAAR CONES

be a proper Haar cone of dimension n. Then

is a proper subset of K. Besides the root number r = r(K) we want to
associate a sign a = a(K) to the cone K such that each function v E K with
exactly r - 1 zeros a ~ t1< t2 < ... < t'_1 <b will attain the sign a on the
right, Le., av(t) >0 for t > t,_I' This is illustrated by an example.

EXAMPLE. The set of polynomials with nonnegative highest coefficient

is a proper Haar cone of dimension n + 1. Here we have r = n + 1 and each
polynomial in K with n roots has the sign a = +1 on the right, as may be
seen from the asymptotic behavior for x -+ 00.

In the general case we only know the functions in the interval [a, b].
Therefore the consideration of the asymptotic behavior is not possible.
Another approach is necessary.

PROPOSITION 3.1. Let I E IN, m + 1~ I~ r. Then there exists an 1­
dimensional Haar subcone K/, HmcK/cK, and a function vEK/ with
exactly 1- 1 (distinct) zeros.

Proof. By definition of r = r(K), the set

M/ := {v E K; v *' 0, v has at least I - 1 zeros in [a, b ]}

is not empty. Choose a function Vo from M/ with minimal k(vo)' and denote
the first I - 1 zeros of Vo by s 1 <s2 < ... <s/_ 1 •

First, from the Haar condition we have

k(vo) ~ I.

We claim k(vo) = I. Assume to the contrary that k(vo) > I. Let L, {I,..., m} c
L c J(vo), be a set of order I. Since H L := span {h /; i E L} is a Haar space of
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dimension I, there exists a nontrivial function h E HL vanishing at the points
1$1 < 1$2 < ... <1$[-1' With 1:= p,...,m} we write

m

h = L fl;h; + L flvhv
;=1 veLV

m

Vo= L a[h; + L avhv+ L al'hl' ,
;=1 veLV I'EJ(VO)\L

In the case flv ~ 0 for vELV, we have h E K contradicting the fact k(h) <
k(vo). In the other case, recalling av >0 for v E LV, we conclude that there
is a constant A> 0 such that

for v E LV

and

for at least one VoE LV.

Thus we have Vo+Ah E M[ and k(vo+Ah) < k(vo)' which is a contradiction
to the choice of Vo' This proves k(vo) = I and

K[:= 1 L a;h;; a; ~ 0 for i ~ m + 11
;eJ(vo) \

is a cone as stated. I
The properties of the subcones K[ just constructed are studied in

PROPOSITION 3.2. Let m + 1~ I~ rand Hm c K[ c K be a Haar cone
of dimension I. If K[ contains a function with exactly 1- 1 zeros, then there
are nontrivial functions in K[ exhibiting 1- 1 prescribed zeros. Moreover all
functions in K[ with 1- 1 zeros in (a, b) attain a flXed sign a = a(K[) on the
right-hand side of the zeros.

Proof. Let K[ be generated by

hi' h2 ,·.. , hm , hv ,..., hv'm+1 I

and let V oE K[ be a function vanishing at 1- 1 points s. < 1$2 < '" <1$[-1'

Since in I-dimensional Haar spaces functions with I - 1 prescribed zeros are
determined up to constants, there is Ao E IR such that
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for all choices a ~ t l < t2 < ... < tl _ 1 ~ b.
Indeed, by expanding determinant (*) along the last column, we conclude

from Remark 2.1 that the coefficients associated with the functions hom + I '

hom +
l
"'" hOI have the same sign as the corresponding coefficients of AoU(t).

Furthermore, again by Remark 2.1, all functions of form (*) have the same
sign =: a for t > t l _ l • Thus we get the statement concerning the sign by
recalling that in I-dimensional proper Haar cones functions vanishing at
1- 1 points are unique up to positive constants. I

As an immediate consequence of the Propositions 3.1 and 3.2 we obtain

COROLLARY 3.3. All functions belonging to the proper Haar cone K and
vanishing at exactly r - 1 points, r = r(K), exhibit a uniform sign on the
right-hand side of the zeros.

Proof Note that the cones specified in Proposition 3.1 are not unique.
Let K rand Kr be cones in the sense of that proposition. The proof is
complete if we verify a(Kr ) = a(Kr ). Indeed, let v E K r , VE K r be functions
with the same given zeros t l < t2 < ... < tr _ 1 • If v and vattain the opposite
sign for t > tr -1' then a convex combination has an additional zero. Now the
case of arbitrary functions in K with r - 1 zeros (not necessarily belonging
to r-dimensional subcones) is treated in an obvious way. I

This sign specified in the corollary will be denoted as a(K). Furthermore,
we shall denote by K I •e, Hm cKI •e cK, a Haar cone of dimension I
containing a function with exactly 1- 1 zeros and the sign e on the right­
hand side. This notation is justified by virtue of Proposition 3.2. Note that
for 1= r(K) only the sign a(K) is possible. In case I < r, however, both signs
are exhibited.

PROPOSITION 3.4. (Existence of subcones with prescribed sign). Let
m + 1~ I < rand e E {-I, I}. Then there exists a subcone K I •e•

Proof According to Proposition 3.1 there is a (I + 1)-dimensional Haar
cone K 1+ 1 containing a function v with I zeros a ~ s 1 <s2 < ." < sI < b.
Since the zeros of v are all simple, there are <I' <2 E (SI_I' b) such that

and
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Consequently, the set

M I,. := {v E K; v has (at least) 1- 1 zeros

a ,.;:; t1 < t2 < ... < t1- 1 <b and there

is r E (tl_1> b) such that ever) > O}
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is not empty. Choose Vo E M I ,. with minimal k(vo). As in the proof of
Proposition 3.1 we conclude k(vo) = l. Thus Vo has exactly 1- 1 zeros and
the sign e on the right-hand side. Hence,

K I ,.:= \ L: aihi; ai ~ 0 for i ~ m + 1/
/ iEJ(VO) \

is a cone as stated. I

4. THE ALTERNANT CRITERION

As a consequence of the properties of Haar cones established in the
previous section, we shall obtain a characterization of best approximations in
terms of alternants with signs. The uniqueness of best approximations has
already been proved in [1].

Let K be a Haar cone of dimension n. Since an alternant criterion for
Haar spaces is well known, we may restrict our attention to the case where
K is a proper cone. Then, by virtue of Section 3, a tuple (r, 0) is assigned to
K. Since K is convex, vE K is the best approximation to fE qa, b] in K, if
and only if zero is the best approximation off- v in the Haar cone KJ(V)

[1]. Thus, after replacing K by KJ(vl' we may assume v = O.

THEOREM 4.1. Let K be a proper Haar cone and (r,o) the associated
tuple. Then the following properties are equivalent:

(i) Zero is the best approximation to f in K.

(ii) There is an alternant to f of length r with sign -0 on the right.

Proof (a) Assume that there is an alternant of length r with the sign
-0 on the right, i,e., there are points a,.;:; t 1 < t2 < ... < t,";:; b such that

(-O)(-ly-if(tJ = Ilfll,

Suppose that there is a better approximation v E K. Then for 1";:; i ,.;:; r we
have

(-O)(_1)'-i (f - v)(tJ";:; Ilf- vii < Ilfll = (-o)(-1)'-if(t i)·
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i = 1,2,..., r.

Hence v E K has r - 1 zeros and the "wrong" sign -0 on the right, which is
a contradiction.

(b) Let zero be the best approximation to I in K. Assume that there is
no alternant to I of length r with sign -0 on the right. Let I denote the
maximum length of an alternant to I and e the associated sign. Then we have
either I < r or I = r, e = o. Since K contains a Haar subspace of dimension
m, we have I ~ m + 1.

According to Proposition 3.4 (or Proposition 3.1) there is a Haar subcone
K/.•. From the classical characterization for best approximations in linear
spaces we know that the I-dimensional Haar space H := span(K/.•) contains
a function h E H such that

III- hll <11/11·
With the same arguments as above it follows that

e(-1)/-i h(t;) >0, i = 1,2,..., I.

if t l < /2 <... <// are the points of the alternant. Thus the function h has
I - 1 zeros and the sign e on the right, which means that h belongs to the
subset K/,. c H, contradicting the optimality of zero. I

In [2, Part II] the best approximations in the tangent cones of sets of )'
polynomials are characterized by alternants. There the length of the alternant
is expressed in a technical way. From Theorem 4.1 the meaning of this
number becomes more transparent; see also [6].
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